Branch Prediction Using

Branch History Tables with

1-Bit and 2-Bit Histories

Joshua Wallis

The University of Texas at Austin

Student, Dept. of Computer Sciences

Austin, TX

April 27, 2001

josh@cs.utexas.edu
(512)-474-8223

Introduction / Background

As processors become more complex, pipeline depths increase, and multi-issue datapaths issue more instructions per cycle, delays caused by branching become more critical. Multi-issue can cause “n times as many branches per cycle, with more % loss overall per delay” [3] and create more control hazards which make control design more complex. Typical programs contain between 10-30% branch instructions and the effect of misprediction is usually two to three clock cycles [1] but may be as high as ten or more. [8] For these reasons, nearly all current processors have some kind of branch prediction scheme. Both the PowerPC 620 and Pentium processors use dynamic branch prediction based on branch history tables. [2]

[image: image1.png]pc

§ bifs T i bits

taken/untaken-

prediction

k bits

branch (pattern) branch predictor
Figure D [5] history table (bimodal) table

Branch prediction using branch history tables is a relatively simple dynamic scheme that can yield over 90% accuracy. [5, 10] Branch history tables are also commonly known as branch prediction buffers or branch history buffers. A branch history table is a set of registers that stores one or two bits corresponding to “take branch” or “skip branch” for each branch instruction. Using more than two bits per entry does not significantly improve prediction. [3] There are different ways of mapping the instructions to the table entries, but the most common is to index the table using the lowest few bits of the instruction address. Some implementations also include the branch’s target address in the table or in an associated branch target buffer. Figure A shows the hardware and logic associated with branch history tables.

[image: image2.png]Instr. Target Pred.
addr.__ addr.__bits

Addr. of branch instr.

Instruction

Fetch Unit [

discard fetches

Instruction and restart from
Sache corect address

Figure A [2]

In a one-bit scheme, if the bit is on, the branch is predicted as taken. If this prediction is correct, the bit is unchanged. If the prediction is incorrect, the bit is flipped. There is more than one algorithm for two-bit schemes. Figure B is a finite state machine representing one algorithm for a two-bit branch history table (with binary numbers added to make it correspond to Figure C). Figure C is a finite state machine representing the more common algorithm for a two-bit branch history table. The difference between the two algorithms is in the weak state transitions to the state of opposite prediction. If the table entry is in a weak state and the prediction is incorrect, the first algorithm changes the entry to the opposite weak state while the second algorithm changes the entry to the opposite strong state. An example may help to show how this would affect prediction. If the table entry were in a weakly taken state (01) and the branch was not taken, the first algorithm would change the entry to weakly not taken (10) while the second algorithm would change the entry to strongly not taken (00). The next time the entry was accessed, both would predict “not taken.” If the branch were taken, the first algorithm would change the entry back to weakly taken (01) while the second algorithm would change the entry to weakly not taken (10). The next time the entry was accessed, the first algorithm would predict “taken” while the second would predict “not taken.” The only changes required to make these finite state machines equivalent would be to make Figure C’s upper-right “not taken” arrow point to the lower left and to make the lower-left “taken” arrow point to the upper-right. [2, 6] There are other rarely used variations including some asymmetric schemes that favor taken or not taken. [5] This family of algorithms is commonly called “bimodal” since there are two possible predictions that can be made. [5, 10]

[image: image3.png]not taken
1

pasaten J

Taken

01
prd.: taken

taken not taken

10 not taken
P w—
taken

Figure C [2] not taken

00
prd.: not taken

Factors Affecting Prediction Accuracy

-Number of entries-

History table information is collected throughout the run of the program. The first time a branch instruction is seen it is indexed in the table. If the particular implementation includes the target address, the delay of recalculating the address is also avoided. If the table is filled and a new entry needs to be added, an entry may be discarded using algorithms similar to those used in caches. [2] If a “least recently used” or comparable “intelligent” (non-random) algorithm is employed, the control logic will increase in size and some extra record keeping bits may need to be added, which may force designers to compensate by making the table smaller. Research has shown that a branch history table’s size does affect its prediction accuracy but that this accuracy will not increase much after about six thousand (two-bit) entries. [5] Most tables range in size from 256 to 4K. [3, 4] One source contained research done comparing a table with 4K entries to a table with unlimited entries and found no difference in prediction accuracy. [9]

-Mapping / Aliasing-

If the table is implemented using direct mapping of the lowest bits of the branch instruction address, several branch instructions may map to the same table entry. [7] This is sometimes called overlapping but is actually aliasing. This does not necessarily mean that the correct prediction rate falls, in fact it may even improve. If it does improve, it is called “constructive aliasing.” If it results in fewer correct predictions, it is called “destructive aliasing.” If there is no difference, it is referred to as “harmless aliasing.” [4, 8] Aliasing is usually destructive and can be a major factor limiting the accuracy of branch prediction using branch history tables. [8] A designer who uses direct mapping must take into account the trade-off between high aliasing in a small table and low aliasing in a larger (and therefore slower, more expensive) table. If the mapping is fully associative, aliasing does not occur but access time is increased because the table must be searched for the specific instruction’s entry. This search may prove to be wasted time if the entry is not found in the table. [4] Because aliasing can make a table more sparse, sharing schemes have been developed which are intended to spread entries more uniformly through the table and distinguish between different branch instructions with similar addresses. They do this by xoring instruction addresses with a global history register. Although this may reduce aliasing and table size, it may have a net effect of slowing the process because of the added overhead of the xor calculation. [5]

-Context switching-

When a processor is executing more than one process, it must divide its time between the processes. When the processor stops execution of one process and begins executing another it must save the state of the first process fully so that it can resume execution of that process later. This is called a context switch. [4] On UNIX systems, sixteen context switches per second is common, which means on a 50MIPs machine, about three million instructions are executed between each context switch. On a multiprocessing system or a system running threads, the number of instructions may be much smaller. The smaller the number of instructions between context switches, the higher the miss rate, but very little difference is seen for instruction counts of over one million. [5] Since context switches occur so frequently, they must be accomplished as quickly as possible. Branch history information is usually not considered vital, so it is lost during a context switch. The branch history table may be flushed [4, 5] or it may remain and be interpreted by the next process as its own. The PowerPC, for example, has no way of knowing when the operating system has switched contexts and continues using the branch history table from the previous process. [6] The new process is still correct but produces a higher misprediction rate than if the table had been flushed. The only advantage is less complex processor control. In either case, the prediction rate will fall dramatically after a context switch and in many cases even a static prediction scheme will yield higher results during this “warm up” period. [4]

-Number of bits-

When the concept of multiple-bit branch history tables was in the early stages of research, designs with a range of one to four or more bits were tested. It was soon realized that there was no substantial gain using more than two bits. [3, 9, 10] The most common example used to demonstrate why two bits are better than one involves exiting and reentering the same loop. After going through the loop repeatedly, the final prediction will be “taken” (to get back to the head of the loop) but when the loop is exited, the table entry will flip to “not taken.” The next time the loop is entered and the tail is encountered, the entry will predict “not taken” but the branch will be taken. In a two-bit scheme, after getting the first prediction wrong when leaving the loop, the table entry will change from “strongly taken” to “weakly taken.” The next time the loop is entered and the tail is encountered, the two-bit entry will still correctly predict “taken.” The one-bit scheme makes two incorrect predictions while the two-bit scheme makes only one. [4, 7, 9]

Comparison to Other Prediction Schemes

-Static schemes-

Early attempts at branch prediction used static information gathered before the execution of the program and basic assumptions about loop behavior. The simplest types of static predictors are “predict always taken” or “predict never taken” which predict all branches for all runs of the program the same way. Studies show that “predict always taken” is slightly more accurate because 60-70% of all branches are taken. [1, 2, 10] Slightly more complicated versions are “always backward/never forward” which are good for loop-intensive programs because the branch at the tail of the loop is always predicted to jump back to the beginning of the loop. [1] A different type of static scheme is called profiling. To take a profile, a program is compiled and then run with a profiler and some test data. The profiler calculates whether each individual branch is more often taken or skipped and returns this information to the programmer. The program is then recompiled using this information and the opcode of each branch is modified so that the processor will use the static prediction made by the profiler. [4] A main difference in the profiling scheme is that the branch prediction is stored in software rather than hardware. Profiling is the most accurate type of static prediction and can produce over 90% correct prediction. [5]

-Dynamic schemes-

[image: image4.png]o1 > 1
Weakly Strongly
Taken Taken

NT - Not Taken

NT

T

Figure B [6]

Researchers have observed that bimodal schemes do not do well when branches have highly dynamic behavior, and many other types of dynamic prediction have been studied. Some schemes use branch pattern tables to predict a specific branch’s behavior based on the recent pattern of taken or not taken branches. These patterns are stored in a table and indexed similarly to bimodal branch history tables. Correlated schemes combine these two ideas, making predictions based on both an individual branch’s behavior and patterns exhibited by related branches. Most correlated schemes use two tables: a global pattern history table and a modified bimodal branch history table. The bimodal table is similar to a typical bimodal table but has several one or two bit entries for each branch instruction. The branch pattern table is accessed and it in turn accesses one of the entries for that particular branch in the bimodal table. [5, 10] Figure D shows the hardware for a correlated predictor. In this figure, j determines the number of patterns the pattern table will remember, k determines the length of the pattern (and consequently the number of entries for each branch entry in the bimodal table) and i determines the number of branch entries in the bimodal table. Different values for these variables determine the sub-type (common correlation, gselect, global, local). Sharing schemes (gshare) are similar to bimodal schemes except that the lower bits of the instruction address are xored (as mentioned above) before they are used to index the history table. Selective schemes have independent predictors and a selector that decides which predictor to use based on a record of each predictor’s performance. Selective schemes typically are more accurate over a wider range of programs since they employ more than one scheme. They are also more complex in both control and hardware. [5]

-Benchmarking-

Most or all static prediction schemes yield less accurate prediction rates than any of the widely used dynamic prediction schemes (branch history tables, pattern history tables, gshare, gselect, local, global, etc.). [1, 3, 4, 5] Many researchers use benchmark packages such as SPEC95 Integer and SPEC92 Floating Point which each contain a variety a variety of components like gcc, go, and hydro2d. [5] Others use specific programs with known branch frequency like mcf, ammp, and mgrid. These programs have branch frequencies from every four instructions to every few hundred instructions. [10] Frequency of branch instructions differs for programs doing mostly integer calculations and those doing mostly floating-point calculations. [5, 6] IBM reports that PowerPC programs containing primarily integer calculations typically have double the branch instructions of floating-point code. [11] Research also indicates that floating point programs have a higher percentage of taken branches than integer programs. [5, 10]

-Results-

Table A shows percentages of correct predictions using different schemes for both integer code and floating point code. The abbreviations are as follows – SP = Static using Profiling – ST = Static always Taken – SNT = Static always Not Taken – Select = Selective – CC = Common Correlation. The information was gathered from two sources. Some of the schemes were only included in one source or another, and when they appeared in both the numbers were averaged. When the schemes appeared in both the numbers were always very similar, varying not more than 2%.

Table A [5, 10]

%
SP
ST
SNT
Bimod
Local
Global
gShare
gSelect
Select
CC

Int
89.8
54.0
56.0
90.4
90.4
90.8
90.7
91.8
92.7
90.8

FP
93.3
58.0
42.0
94.4
96.1
96.0
95.5
95.3
95.5
94.7

-Observations-

-As was expected, all of the dynamic schemes produced better results than any of the static schemes.

-All of the accuracies of the floating point code (except for SNT, which was expected) were higher than those for the same schemes running integer code. [5, 10] One explanation for this is that the branch frequencies for most of the floating point benchmarks were higher than those for the integer benchmarks. [10]

-All of the two-level schemes produced better results than the simple bimodal scheme.

-The schemes all produce similar, very high results. There are inherent upper limits on predictability.

-Accuracy alone does not determine the best scheme. When choosing a design, one must also take into account complexity, speed, and cost.

-Improving prediction accuracy-

“In 1994, Po-Yong Chang and his workmates estimated that the prediction accuracy should be at least 97.7% to make the branch penalty less than 10%” [10] but none of these implementations exhibited accuracies this high. Many ways to improve upon the accuracies (some are used in some of these schemes) are known and are the topic of much research. These include:

-enlarging table size,

-combining several prediction schemes,

-sharing table indexes, [3, 5, 10] and

-overriding prediction with static indicators in the opcode. [11]

-Conclusions-

Branch prediction of some sort is used in nearly all current architectures and is accepted as a necessary component in high performance processors. Branch prediction tables with two-bit histories do not yield the highest correct prediction rate but are still widely used because of their relative simplicity (compared to two-level schemes). This simplicity makes control design easier and reduces the die area used, making the processor cheaper. These factors must be taken into account when choosing a scheme to implement. It must be realized that the goal is not prediction accuracy but resulting processor speed. Even if the prediction accuracy is higher, if this is offset by a long delay while making the prediction, the scheme is too complicated and must be changed.

Bibliography

[1] Ken Frazer “Two-Level Adaptive Branch Prediction”, Team Project Report CSE 5350, 1998.

http://home.earthlink.net/~krfrazer/Branch_Prediction.pdf
[2] Petru Eles “Branch Prediction Strategies”, Lecture notes – Advanced Computer Architecture, 2000.

http://www.ida.liu.se/~TDDI68/lecture-notes/lect4.frm.pdf
[3] John McCallum “Advanced Pipelining (part 2)”, Lecture notes – Computer Architecture, 2000.

http://www.comp.nus.edu.sg/~johnm/cs3220/l10.htm
[4] Alexey Malishevsky, et al. “Dynamic Branch Prediction”, Team Project Report ECE 570, 2000.

http://www.ece.orst.edu/~benl/Projects/branch_pred/
[5] Zhendong Su and Min Zhou “A Comparative Analysis of Branch Prediction Schemes”, Team Report

CS 252, 1995.

http://www.cs.berkeley.edu/~zhendong/cs252/cs252.html
[6] Steve Hoxey, et al. “The PowerPC Compiler Writer’s Guide”, Warthman Associates, Palo Alto,

 California, 1996.

http://www.chips.ibm.com/products/powerpc/tools/compiler/issues2.html
[7] David Patterson and John Hennessy “Computer Organization and Design”, Morgan Kayfmann

Publishers, Inc., San Francisco, California, 1998.

[8] Ismail Haritaoglu “Branch Prediction Techniques based on Pattern History Tables”, Project Report

CMSC 818K, 1995.

http://www.umiacs.umd.edu/~hismail/818K/report.html
[9] Kunle Olukotun “Compiling for ILP and Branch Prediction”, Lecture notes – EE 282h, 1998.

http://www.stanford.edu/class/ee282h/handouts/Handout21.pdf
[10] Junyi Xie and Bo Guo “An Evaluation and Comparative Analysis of Branch Prediction Schemes on

Alpha Processors”, Team Report CPS 220, 2000.

http://www.cs.duke.edu/~junyi/cps220/presentation.htm
[11] Steve Hoxey, et al. “The PowerPC Compiler Writer’s Guide”, Warthman Associates, Palo Alto,

California, 1996.

http://www.chips.ibm.com/products/powerpc/tools/compiler/code1.html#74421
